CRIZAL SAPPHIRE® 360° UV NO-GLARE LENSES*

RESEARCH BEHIND MULTI-ANGULAR REFLECTIONS

WHITE PAPER ONLINE PUBLICATION, POINTS DE VUE, INTERNATIONAL REVIEW OF OPHTHALMIC OPTICS, WWW.POINTSDEVUE.COM NOVEMBER 2017

Maxime BOIFFIER Aude CARREGA Dr. Tito DE AYGUAVIVES Sébastien FRICKER Dr. Hélène MAURY

MAXIME BOIFFIER

MSc, Consumer Experience Study Manager, Essilor International

Maxime joined Essilor International in 2010 after a Masters in Optometry and Vision Sciences from the university of Paris Sud XI (Orsay, France).

He works as a consumer experience study manager, specialized in the evaluation of innovations by consumers. In parallel, he has been teaching optometry to dispensing opticians since 2012.

AUDE CARREGA

MSc, Consumer Innovation Manager, Essilor Center of Innovation & Technology Europe

Aude joined Essilor International in 2012 after a Masters in sensory analysis and marketing science. She managed the Research & Development Sensory Analysis unit for four years. In 2017, she joined the consumer Seniors Roadmap.

DR. TITO DE AYGUAVIVES

PhD, Consumer Innovation Manager, Essilor Center of Innovation & Technology Europe

Tito graduated from the University Pierre & Marie Curie (Paris, France) in Plasma Physics in 1996 and obtained his PhD in plasma physics and material science at Ecole Supérieure d'Optique (Orsay, France) in 1999.

He worked for two years as a postdoc at North Carolina State University (Raleigh, USA), where he conducted applied research in thin films for microelectronics applications. He joined Coherent Inc. R&D (East Hanover, NJ, USA) in 2001. Tito started at Essilor International R&D in 2004, working on thin film processes and anti-reflective designs (Crizal Avancé UV[™], Crizal[®]UV). In 2016, he joined the consumer Young Adult Road Map.

SÉBASTIEN FRICKER

MSc, R&D Study Manager, Essilor Center of Innovation & Technology Europe

Sébastien graduated as a physics engineer from Ecole Polytechnique (Palaiseau, France) in 2000 and obtained a Masters in electrical engineering from the University of Michigan (Ann Arbor, USA) in 2002. He worked for 10 years in research and development in the optical metrology industry. Sébastien joined Essilor International Research and Development in 2012, where he works on ophthalmic lens design methods and lens performance modeling.

DR. HÉLÈNE MAURY

PhD, R&D Program Manager, Essilor Center of Innovation & Technology Europe

Helene graduated from the University Pierre & Marie Curie in Physical Chemistry in 2004 and received her PhD in optics in 2007. She continued her research in optical design and materials as a postdoc for the French Atomic Energy Commission (CEA) for two years. She then worked for Thales Group as a project manager on the design and manufacture of various optical systems for spatial applications. She joined Essilor International in 2011, where she works in developing new anti-reflective treatments and filters for ophthalmic applications.

INTRODUCTION

People are increasingly exposed to multiple light sources, resulting in **overall light saturation**. In our modern indoor and outdoor environments, **light comes from all directions** and generates **reflections on lenses**, which are a source of discomfort for eyeglass wearers.

Crizal Sapphire® 360° UV No-Glare lenses are Essilor's optimal anti-reflective treatment, designed to reduce reflections on both the front and back of the lens regardless of the light's incidence angle.

Thanks to **new calculation tools** and the introduction of a **new nanolayer**. Essilor is now able to manage higher complexity in treatments without having to compromise on anti-reflective efficiency and UV protection.

Crizal Sapphire 360° UV No-Glare lenses are now the most sophisticated product in the Crizal[®] range, with 360° Multi-Angular Technology™ in addition to all benefits of *Crizal Avancé UV* No-Glare lenses.

1. THE CONTEXT [+] LIGHT POLLUTION AND WEARER NEEDS

The light in our indoor and outdoor environments has changed dramatically over the past few decades. Artificial lights, computer screens, LEDs, smartphones and a whole array of connected devices have all had a strong impact on our everyday lives. What's more, the diversity and intensity of lights is not about to decrease any time soon – on the contrary, if anything they are expected to continue to increase.

The term **light pollution**, or photo-pollution, is often used to describe this environmental trend. It is generally defined as excessive, misdirected or obtrusive artificial light.

Light pollution is a major side effect of urbanization and industrial civilization. Its sources include outdoor and indoor lighting, advertising, commercial properties, offices, factories, streetlights and illuminated sporting venues. It is most severe in the highly industrialized, densely populated areas of North America, Europe, Japan and Southeast Asia.

This **trend has been accelerating** as technology has progressed and countries have continued to develop. It covers the following:

- Changes in indoor lighting such as energysaving light bulbs, neon lights and LEDs
- New outdoor lighting, in particular street lights

- A massive increase in the use of screens of all sizes and types for a host of different activities
- New screens used for advertising and other public displays

The result is many people feel they are constantly exposed to different types of artificial light, and more often than not it is either unwanted or uncontrollable, coming from diverse sources and **from all directions**.

From an eyeglass wearer's standpoint, the situation is critical. New optical issues such as backside reflections, optical diffusion caused by smudgesorscratches and ghostimages induced by multi-reflections within lenses have become common. This could lead to increased visual discomfort, forcing wearers to find new alternative strategies.

If properly designed, the eyewear solution can limit intrinsic drawbacks, such as reflections and ghost images.

The new Crizal Sapphire® 360° UV No-Glare lenses interact with light taking into account its wavelengths (visible and UV), intensity (reflections and ghost images) and direction (multi-angularity). As a result, it successfully resolves these issues.



2. THE APPROACH A NEW WAY OF THINKING ABOUT ANTI-REFLECTIVE TREATMENTS

Essilor studied and analyzed indoor and outdoor lighting environments, identifying many key factors and consumer insights. This led us to rethink the way anti-reflective treatments are designed. Until now our anti-reflective treatments were designed to be efficient around the **normal incidence direction**, which is typically below ± 15°, as required by international ophthalmic standards

to be considered anti-reflective (ISO 8980-4 norm). But this configuration doesn't match real-life situations because reflections are only considered in a narrow angular range – lateral and back reflections are not taken into account. In the new approach, illustrated in **Figure 1**, **both the wearer and its luminous environment are considered together**.

FIGURE 1. EVOLUTION OF INCIDENCE ANGLE OF FRONT, BACK AND LATERAL REFLECTIONS

→ A NEW WAY OF DESIGNING ANTI-REFLECTIVE TREATMENTS

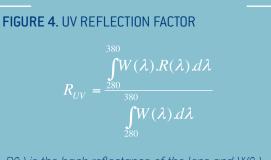
For many years producing anti-reflective treatments on a large industrial scale with multiple optical features and a guarantee of high-quality standards (adhesion, durability, scratch resistance, water repellency, etc.) has required significant technical expertise, as well as know-how developed over many years in R&D.

4

Our main challenge when designing Crizal Sapphire® 360° UV No-Glare lenses was to combine the **wearer's needs** and expectations regarding light pollution with a high level of **UV protection** (same level as Crizal Avancé UV[™] No-Glare lenses with E-SPF® 35* index) while keeping in mind our **industrial constraints**.

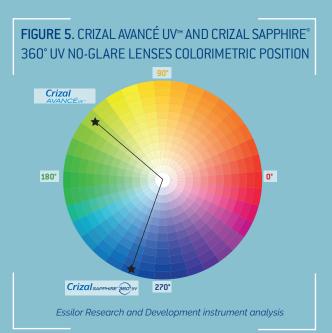
Multi-angular efficiency against light pollution. The key parameter used in international standards to assess anti-reflective efficiency is luminous reflectance Rv^[1]. This factor indicates the light intensity reflected by the lens, as perceived by human eye:

FIGURE 2. LUMINOUS REFLECTANCE FACTOR

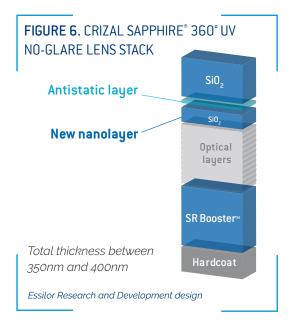

 $Rv = \frac{\int_{380}^{780} R(\lambda). D65. V(\lambda). d\lambda}{\int_{380}^{780} D65. V(\lambda). d\lambda}$

 $R(\lambda)$ is the spectral reflectance of the lens, D65 is the spectral power distribution of the standard illuminant and $V(\lambda)$ the spectral luminous efficiency function of the average human eye for daylight vision, as specified in ISO/CIE 10527.

To quantify the overall anti-reflective efficiency whatever the light direction, **a multi-angular** α **criterion has been proposed**, defined from an integral in the angular range (0°-45°).


FIGURE 3. NEW MULTI-ANGULAR CRITERION $\alpha = \int_{0^{\circ}}^{45^{\circ}} R\nu(\theta) \cdot sin\theta \cdot d\theta$ θ is the incident angle of light;

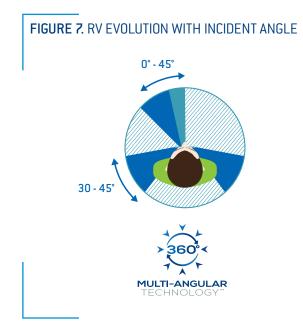
>UV protection. Although our lenses are UVabsorbing and protect the eye from light coming from the front of the wearer, it has been shown that UV radiation can impact the eye from the side by reflecting on the back surface of the lens ^[2]. The latest generation of Essilor treatments offers more comprehensive protection of the eye from the hazards of ultraviolet radiation. taking into account UV reflection on the back surface of the lens. The optimized treatment for UV protection is therefore the one on the concave side of the lens. A dedicated UV reflection factor **R**_{IIV} ^[3] was proposed by Essilor R&D experts to measure the UV anti-reflective efficiency of a treatment.

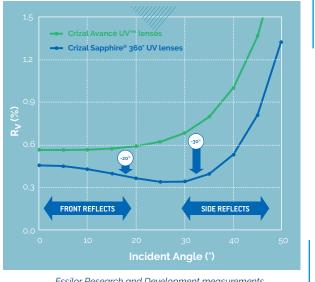

 $R(\lambda)$ is the back reflectance of the lens and $W(\lambda) = E_s(\lambda)^* S(\lambda)$ is the UV eye-exposure function.

Industrial constraints Each anti-reflective treatment displays a residual color of reflection. A mathematical representation of the color is used, where the hue is expressed as an angle (h°). The saturation of the color or chroma (C*) is the distance that separates the circle center to the color position of the treatment^[4]. In order to develop products that can be manufactured in various production facilities, anti-reflective stacks are optimized with high standards in terms of colorimetric stability, called colorimetric robustness by R&D experts. The colorimetric robustness is defined as the dispersion of the hue angle when applying a random variation of layer thicknesses. Until now, the best compromise that could be found in terms of colorimetric stability was in the green area (h=135°).

F-7 THE INNOVATION BEHIND THE CONCEPT

Crizal Sapphire® 360° UV No-Glare lens optimization is the result of innovation over the last four years in combining multi-angular anti-reflective efficiency and a high level of UV protection on both sides of the lens with a high color stability to meet our industrial constraints. Thanks to special and continuous effort, Essilor R&D experts have developed faster and more powerful algorithms, allowing to explore new design possibilities and find new solutions out of the green region, and in particular in the blue region where level of Rv is lower (Figure 5). Moreover, the introduction of a new SiO2 nanolayer underneath the antistatic layer enables ultimate performance. Essilor has filed patent applications to protect this new stack structure.




CRIZAL SAPPHIRE[®] 360° UV NO-GLARE 3. LENS PERFORMANCE

HI MULTI-ANGULAR EFFICIENCY

The Figure 7 represents the multi-angular antireflective efficiency of Crizal Sapphire 360° UV No-Glare lenses compared to Crizal Avancé UV™ lenses. The curve shows the evolution of the Rv according to the incident angle.

The lateral reflections are reduced up to 30% and the front reflections up to 20% for similar substrate/ hardcoat configurations.

Essilor Research and Development measurements

E SENSORY EVALUATION

Sensory analysis is a scientific discipline that applies principles of experimental design and statistical analysis to the use of the five senses for the purposes of evaluating consumer products. The discipline requires panels of human assessors on whom the products are tested and responses are recorded.

Sensory analysis is used during the design of a new product to measure the impact of a new property or to optimize its formulation. The aim is to **translate consumer perception into words** (indicators) and to **correlate them to the product's measurable physical properties**. Whereas a device measures only one aspect of a product, people give multi-dimensional information, which includes a wide range of visual, tactile, olfactory, gustative and auditory data ^{15.6}.

In the ophthalmic industry, Essilor was the first to use sensory analysis to assess the efficiency of its new lenses. In the context of Crizal Sapphire® 360° UV lenses, **two indicators were developed** for assessing multi-angular anti-reflective efficiency:

Front Reflecting (Wearer & Observer point of view)

The wearer looks at him/herself in the mirror, or an observer looks at him/her, and sees the reflection of his/her environment on the lenses with more or less intensity.

FIGURE 8. WEARER ASSESSING FRONT SIDE REFLECTIONS

Essilor internal research

Backside Reflecting

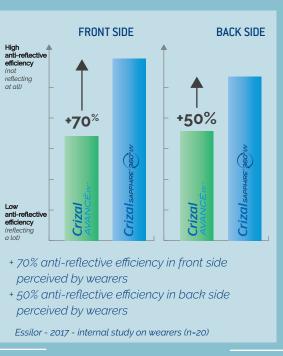

The wearer sees his/her eyelashes, eyes, cheeks and wrinkles on the lens with more or less intensity.

FIGURE 9. WEARER ASSESSING BACK SIDE REFLECTIONS

Essilor internal research

The evaluation results have shown that *Crizal Sapphire 360° UV* lenses are better perceived than Crizal Avancé UV™ lenses by the panel of wearers. These results were confirmed on 1.5, 1.6 and 1.67 substrates.

FIGURE 10. ANTI-REFLECTIVE EFFICIENCY PERCEIVED BY WEARERS

H WEARERS TEST THE LENSES IN REAL LIFE

In 2017 Essilor commissioned a wearer test with Crizal Sapphire[®] 360° UV No-Glare lenses. The objective of this study was to validate the **overall performance** of the lenses with the new treatment, as well as the **performances in various daily situations where light could be an issue**. The study was conducted in the US by an independent third party. Before taking part in the study, the 107 wearers had worn lenses on a daily basis either with an anti-reflective treatment (n=53) or without an anti-reflective treatment (n=54).

During the study, the participants were provided with the lenses for a three-week wearing period for daily usage, with no specific instructions. After this period, they answered a questionnaire, providing an overall evaluation and a more specific one related to the key benefits of *Crizal Sapphire 360° UV* lenses. As can be seen on Figure 11, **9 wearers out of 10 declared being satisfied or very satisfied** with *Crizal Sapphire 360° UV* lenses, and **91% preferred these lenses** in comparison to their current lenses.

Beyond their overall evaluation, wearers also evaluated the transparency of the lenses in two kinds of conditions:

- When looking at the lenses as an observer to evaluate the **"aesthetic transparency"** (for example, when the wearer was looking at him/ herself in a mirror or on a picture).
- When looking through the lenses to evaluate the **"visual transparency."**

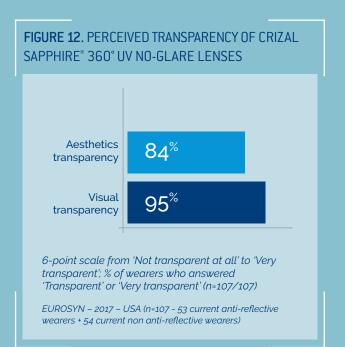
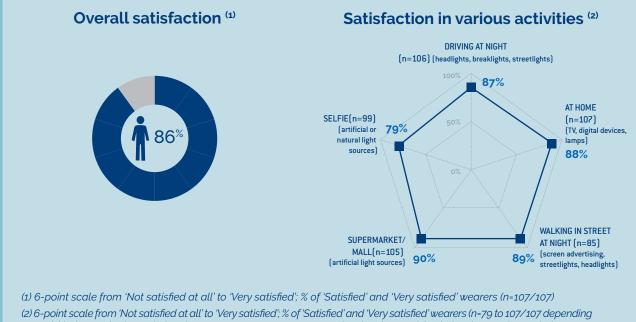


FIGURE 11. OVERALL SATISFACTION WITH CRIZAL SAPPHIRE[®] 360° UV LENSES AND PREFERENCE OVER CURRENT LENSES


As displayed on Figure 12, 84% of the wearers considered the lenses as transparent or very transparent from the aesthetic point of view. This percentage rises to 95% when the wearers evaluated the transparency when looking through the lenses.

Finally, wearers evaluated their level of satisfaction when performing various activities in which they were particularly exposed to light pollution, meaning they were exposed to multiple light sources at the same time. Figure 13 shows 86% of wearers were satisfied or very satisfied during these kind of activities in general. Moreover, when considering certain specific activities, such as walking in a mall with multiple artificial light sources, 90% of the wearers were satisfied with the new lenses.

It is interesting to note that all the results shown in Figures 11 to 13 are very similar when considering the wearers who usually wear lenses with an antireflective treatment separately from those who don't.

on activities), sample size variation due to some wearers not encountering the given activity during the wearing period

EUROSYN - 2017 - USA (n=107 - 53 current anti-reflective wearers + 54 current non anti-reflective wearers)

Crizal Sapphire[®] 360° UV No-Glare lenses represent a true breakthrough in anti-reflective treatments. This is because it takes into account wearers' needs and real-life conditions where reflections on lenses don't just come from the front but from either side and even from behind the wearer.

Essilor has drawn on new calculation tools and a new nanolayer to create highly complex lenses to enhance anti-reflective efficiency without compromising on UV protection.

The 360° Multi-Angular Technology™ makes it the most sophisticated product in the Crizal® No-Glare lens range, providing it with best-in-class transparency for optimal clarity and aesthetics.

In today's society driven by social media, self-image is extremely important and people control their image more than ever before. Understandably, everyone wants to be seen in their best light. *Crizal Sapphire 360° UV* lenses meet this need spot on.

KEY TAKEAWAYS

- In today's modern society, lighting environments are rapidly evolving. People feel they are constantly exposed to light, coming from various sources and from all directions.
- Essilor has optimized Crizal Sapphire[®] 360° UV lenses to reduce reflections from light coming from 0° to 360°.
- By developing new calculation tools and introducing the new nanolayer inside the stack, Essilor is able to manage various optical targets and optimize lens performance.
- Sensory evaluation has evidenced the overall preference of wearers for *Crizal Sapphire 360° UV* lenses when compared to Crizal Avancé UV[™] lenses with respect to light pollution.
- A real life study carried out by independent third party revealed that a very high percentage of wearers (90%) are satisfied overall with *Crizal Sapphire 360° UV* lenses.^[8]
- [+]

In addition, 95% of wearers find the lenses visually transparent.^[8]

REFERENCES

[1] International standard ISO 8980-4. Ophthalmic Optics-Uncut finished spectacle lenses-Part 4: Specifications and test methods for anti-reflective coatings.

[2] К. Сітек, "Antireflective Coatings Reflect Ultraviolet Radiation". Optometry, Vol. 79, 143-148, 2008.

[3] F. BEHAR-COHEN, G. BAILLET, F. DE AYGUAVIVES ET AL., "Ultraviolet Damage to the eye revisited: eye-sun protection factor, a new ultraviolet protection label ", Clinical Ophthalmology, Vol. 8, 87-104, 2014.

[4] Commission Internationale de l'Eclairage, Technical Report 142-2001. Central Bureau of the CIE, Vienna, 2000 (in press, will be available from CIE Publications).

[5] H. STONE, J. SIDEL, A. WOOSLEY, R.C. SINGLETON. "Sensory evaluation by quantitative descriptive analysis", Food Technology, Vol. 28, 24-34, (1974).

> [6] H. STONE ET AL., "Sensory evaluation practices." California: Academic Press.

[7] "Simulations performed using Zemax Optic Studio from Zemax, LLC" http://www.zemax.com/

[8] EUROSYN - 2017 - USA (n=107 - 53 current anti-reflective wearers + 54 current non anti-reflective wearers)

© Essilor International - November 2017